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Abstract

Two heuristic strategies intended to enhance the performance of the generalized global basis (GGB) method [H.

Waisman, J. Fish, R.S. Tuminaro, J. Shadid, The Generalized Global Basis (GGB) method, International Journal

for Numerical Methods in Engineering 61(8), 1243–1269] applied to nonlinear systems are presented. The standard

GGB accelerates a multigrid scheme by an additional coarse grid correction that filters out slowly converging modes.

This correction requires a potentially costly eigen calculation. This paper considers reusing previously computed eigen-

space information. The GGBa scheme enriches the prolongation operator with new eigenvectors while the modified

method (MGGB) selectively reuses the same prolongation. Both methods use the criteria of principal angles between

subspaces spanned between the previous and current prolongation operators. Numerical examples clearly indicate sig-

nificant time savings in particular for the MGGB scheme.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The efficient solution of large systems of equations Ax = b arising from partial differential equations

remains a challenging problem for nonsymmetric and indefinite systems. For symmetric positive definite

systems, standard multigrid methods are very efficient solvers due to their optimal complexity (computa-
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tional work is proportional to the number of unknowns). However, when the system is nonsymmetric or

highly indefinite, multigrid methods may not perform as well [2]. Such systems arise in a variety of appli-

cations including linearized Navier–Stokes equations, saddle-point problems, least squares problems with

constraints and systems with an indefinite constitutive tensor arising as a result of localized damage in sol-

ids. Some multilevel methods have been applied for certain weakly indefinite systems. However, the existing
strategies impose restrictions on the coarse grid, requiring that these grids are sufficiently fine for the pro-

posed algorithms to converge [3,4]. For nonsymmetric and highly indefinite systems, various methods have

been proposed, yet a general and efficient methodology is still an ongoing research area. Previous work [5]

proposes an operator (matrix) dependent black box multigrid scheme for a single partial differential equa-

tion on structured grid problems. Fish et al. [6,7] utilize multigrid procedures in the context of normal equa-

tions. In [8] the authors employ a special energy minimization interpolation technique for convection

diffusion problems. Recently, an interesting idea to use a ‘‘self-correcting’’ multigrid has been proposed

for symmetric systems [9,10]. This technique finds the algebraically smooth error components unresolved
by multigrid when applied to the homogeneous problem Ax = 0 with a random initial guess, and adjusts

the coarsening process accordingly. Other approaches include a straightforward application of the multi-

grid method as a preconditioner to Krylov iterative solvers [11–13]. However, convergence depends on

the type of multigrid method used and the spectrum of the preconditioned system [1,13,14]. Consequently,

Carpentieri et al. [14,15] proposed to ‘‘remove’’ the smallest eigenvalues of the preconditioned linear system

by shifting them. This involves computations of the smallest eigenvalues which sometimes can be expensive.

The method presented here extends the global basis (GB) method [16,17] and, in particular, the general-

ized global basis (GGB) method [1] when applied to general nonlinear problems solved by Newton�s meth-
od. The GGB method stabilizes the entire multilevel procedure by constructing an additional coarse grid

correction spanned by the nonconverging and slowly converging eigenmodes of the multilevel iteration.

In this sense, the GGB method fits into the ‘‘self-correcting’’ multigrid methodology. The idea is to filter

out modes that are ‘‘nonconverging’’ and ‘‘slow-to-converge’’ and resolve them on an additional coarse

grid. This accelerates the iterative process and yields rates of convergence similar to the application of

the unaccelerated multilevel method applied to a positive definite system. Consequently, any multilevel

method may be applied to difficult systems, assuming only a small number of those eigenmodes need to

be filtered. The method can be used as a stand alone solver or as a preconditioner to Krylov methods.
In this paper, we introduce and study two strategies to reduce the setup cost associated with GGB. Our

objective is to reduce the overallCPU time when GGB is applied to a sequence of linear systems such as those

arising from nonlinear problems solved by Newton�s method. Since most of the computational work is gov-

erned by the eigen computations, reuse of eigenspace information may lead to significant CPU time savings.

The first scheme (GGBa) computes only a few eigenvectors at each linear solve and appropriately enriches an

existing prolongation operator. The second strategy is a modified GGBmethod termedMGGB. The method

predicts whether the previous filter may be used at the current step or whether a new subspace should be com-

puted. Both strategies are based on a criterion thatmeasures themaximumprincipal angle between subspaces.
The paper is organized as follows. In Section 2, a brief introduction of the GGB method is presented. In

Section 3, we motivate the idea of eigenspace reuse on a simple 1D nonlinear (and nonsymmetric) modified

Bratu problem. In Section 4, we discuss the GGBa and MGGB strategies that employ those ideas. In Sec-

tion 5, we study performance of the proposed strategies on various problems. Finally, we conclude with

some remarks in Section 6.
2. Overview of the GGB method

Consider a generic two-level multigrid V-cycle for the solution of linear system of equations
Ku ¼ f
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in which the system matrix K 2 RN�N is generally nonsymmetric indefinite. Let S be defined as the smooth-

ing iteration matrix
S ¼ I �M�1K;
with a relaxation procedure M 2 RN�N and the identity matrix I. Let m1 and m2 denote the number of pre-

and post- smoothing steps, respectively. If the error after iteration i is ei = u � ui, then reduction of the error

after one V-cycle is controlled by the multigrid iteration matrix RMG, given as
eiþ1 ¼ Sm2TSm1ei ¼ RMGei. ð1Þ
where T 2 RN�N is the coarse grid correction given by
T ¼ I � P ðRKP Þ�1RK;
with the prolongation operator from the coarse grid to the fine grid P : Rm ! RN , and the restriction oper-

ator R : RN ! Rm. For symmetric systems the restriction operator is usually taken as the transpose of the
prolongation operator, i.e., R = PT. T is a projector satisfying T = T2 with a spectral radius of q(T) = 1.

Multilevel methods consist of two major elements: smoothing and coarse grid correction. When symmetric

positive definite (SPD) systems are considered, classical iterative methods, used as smoothers, eliminate the

oscillatory components of the error leaving the smooth components almost untouched. This motivates the

use of a coarse grid correction, where smooth components of the error are effectively approximated on a

coarser grid. However, for difficult systems such as indefinite and/or nonsymmetric systems, smoothing

may leave some oscillatory modes untouched, and thus standard multilevel methods might magnify these

modes rather than reducing them [2]. Recently, the GGB method for highly indefinite and nonsymmetric
systems has been proposed [1]. The current paper is a direct extension of the GGB method when applied

to a sequence of linear solves generated by Newton�s method. The GGB method [1] is a generalization of

the global basis method [16,17]. It accelerates (stabilizes) the entire multigrid procedure in the following

way. It first identifies all the troublesome modes of the applied multigrid method by solving for the largest

magnitude eigenvalues ki of the multigrid iteration matrix in Eq. (1)
RMG/i ¼ ki/i; i ¼ 1; . . . ;N . ð2Þ

The troublesome modes are the highest eigenvalues that are either not converging (indefinite) or ‘‘slow-

to-converge’’ modes. The nonconverging eigenvalues are those that lie outside the unit circle |ki| > 1, and

the ‘‘slow-to-converge’’ are the ones that lie inside the unit circle, however very close to one,

i.e. 1 � d < |ki| < 1, for some small positive constant d. For this purpose, an implicitly restarted Arnoldi

method [18] from ARPACK [19] is employed. Next, based on the computed eigenvalues, say k eigenvalues,

the GGB method constructs an additional coarse grid correction, with the prolongation operator spanned

by the corresponding eigenvectors
Qf ¼ spanf/ig
k
i¼1 ¼

j j
/1 . . . /k

j j

2
64

3
75

N�k

. ð3Þ
As shown in [1], the additional coarse grid is used as a multigrid filter, eliminating those troublesome

modes. Therefore, this method belongs to the class of ‘‘self-correcting’’ multigrid methods, which find

the algebraically smooth error components unresolved by multigrid [9,10]. However, as opposed to

[9,10] the algebraically smooth error components are obtained directly from the eigenvalue problem (2).

Fig. 1 schematically illustrates the architecture of the method used in the paper. Black circles denote local
smoothing at each level, and GMRES/QMR is an outer accelerator. The GGB cycle is used to precondition

Krylov methods. We note that other GGB cycles are also possible for nonsymmetric systems (see Fig. 2).
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Fig. 1. Generalized global basis (GGB) cycle.
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The overall error reduction of a single GGB cycle illustrated in Fig. 1, without an external accelerator and

one smoothing iteration at each level can be written as
eiþ1 ¼ ðSTSÞm2F GGBðSTSÞm1ei ¼ Rm2
MGF GGBR

m1
MGe

i;
where STS is the multilevel iteration matrix and m1, m2 correspond to the number of V-cycles. FGGB is the

additional projector (filter), given as
F GGB ¼ I � Qf ðQ�
f KQf Þ

�1Q�
f K;
where the prolongation operator Qf and the restriction Q�
f are spanned by the highest modes of RMG given

in (3).
3. Motivation

The GGB method is useful for solving very difficult problems such as highly indefinite and/or nonsym-

metric systems that require one linear solve or a sequence of linear solves. For the latter, the method is most

attractive for problems with multiple right-hand sides such as linear transient problems or shift-and-invert

eigenvalue problems, since the indefinite and ‘‘slow-to-converge’’ eigenspace given in (2) has to be com-

puted only once at the setup phase and can later be reused throughout the entire sequence of linear solves.
However, if the method is applied to a sequence of linear solves, for instance, those that arise from
GMRES\QMR

GGBML

GMRES\QMR

GGB ML

a b

Fig. 2. Various GGB cycles for nonsymmetric systems: (a) GGB filter on the right, (b) GGB filter on the left.
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nonlinear problems solved by Newton�s method, then the left-hand side (the Jacobian matrix) as well as the

right-hand side changes from one Newton iteration to the other. This results in an eigen computation for

each linear solve in the sequence which may dominate the entire computational cost. However, if the se-

quence of Jacobians are slowly changing, then the eigenspace information can be reused without signifi-

cantly affecting the convergence rate of the GGB method. In practice, the total linear solve iterations
will sometimes increase but overall CPU time can be reduced due to savings resulting from reuse of the

eigenspace.

In this section we motivate the idea of eigen reuse and also illustrate aspects that must be considered in

developing a criteria for reuse. To do this, we consider the following 1D nonlinear boundary value problem

on the interval X = [0,1]
Table

Variat

Newto

1,2

2,3

3,4

4,5

5,6
u00 þ au0 þ keu ¼ 0;

uðx ¼ 0Þ ¼ uðx ¼ 1Þ ¼ 0.

�
ð4Þ
The standard ‘‘Bratu problem’’ is obtained for a = 0 [20]. Central difference discretization on a uniform

mesh leads to a set of nonlinear equations
F iðui�1; ui; uiþ1Þ ¼ buiþ1 þ cui�1 � 2ui þ kh2eui ¼ 0; i ¼ 1; . . . ;N ; ð5Þ

where N is the number of mesh nodes, h is the mesh spacing, b ¼ ð1þ ah

2
Þ and c ¼ ð1� ah

2
Þ. Applying New-

ton�s method to (5) yields a sequence of linear systems with a Jacobian matrix given by the stencil
tridiag½c; �2þ kh2eui ; b�.

We apply a standard two level multigrid method to the sequence of linear systems. The mesh spacing is

doubled to obtain the coarse mesh. Linear interpolation is used to transfer from coarse grid to fine grid

Pmg : R
n ! RN , and either a full weighting Rfull ¼ 1

2
PT
mg or injection
Rinject ¼
0 1 0

0 1 0

0 1 0

0
B@

1
CA.
is used for restriction.

Table 1 illustrates the behavior of the standard multigrid method accelerated by GGB, applied to prob-

lem (4). We set k = 3 and a = 0, with initial guess u0 = 2sin(px), which yields a symmetric indefinite Jaco-

bian. One pre- and post-Gauss–Siedel smoothing iteration is performed on the fine level. The GGB filter in

(3) is constructed out of four eigenvectors. Specifically, Table 1 reports the relative perturbation of the high-

est eigenvalue and eigenvector. The last column of the table indicates the acute angle between the eigenvec-
tors computed at iteration j and j + 1, respectively. The acute angle h between two vectors x1 and x2 is

defined as
1

ion of various quantities of RMG with nonlinear iteration

n iteration jkj
1
�kjþ1

1
j

jkj
1
j

kqj
1
�qjþ1

1
k

kqj
1
k hðqj1; q

jþ1
1 Þ

MGfull MGinj MGfull MGinj MGfull MGinj

0.0155 6.3075 0.0754 1.7429 4.0061 58.7466

0.0173 11.0640 0.0804 1.4135 4.4526 89.9387

0.0033 0.9579 0.0136 0.0961 0.7723 5.5056

0.0148 0.8137 0.0711 0.1243 3.4193 7.1258

0.0007 0.0587 0.0033 1.9976 0.172 5.6059
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cos h ¼ jxT1 x2j
kx1k2kx2k2

. ð6Þ
It can be seen from the table that the relative perturbation of the eigenvalues as well as the eigenvectors is

small, for the case of multigrid with full weighting. This suggests that reusing the same filter Qf in Eq. (3)

should be sufficient to obtain satisfactory convergence rates. As a counter example, multigrid with injection

suffers from large relative variations in eigenvectors, hence one must recompute the eigenspace. In fact, if
the initial eigenspace computed at the first Newton step is reused throughout the linear sequence, eventually

the GGB method fails to converge. That is, eigen reuse must be done carefully. Further, a measure based

on the acute angle between the two eigenvectors may detect a large variation in the eigenspace. We also

note that a variation in eigenvalues does not imply changes in eigenmodes and therefore cannot be used

as appropriate measure. Nevertheless, the eigenvalues play an important role in determining the number

of modes used to construct the filter (see Section 2).

In the next section we generalize the acute angle to a set of criteria that automatically determine when the

eigenspace needs to be recomputed.
4. Strategies to reuse eigenspace information

We propose two heuristic strategies that reuse the already computed prolongation operator. The first

measure is termed GGBa and it is based on constantly adding new eigen information to the filter, i.e.,

increasing the prolongation space with every Newton iteration. The second is MGGB and it is based on

using the exact same prolongation operator (full reuse). Both strategies rely on the criteria of principal an-

gles between subspaces spanned between the previous and current prolongation operators. Computation of

principal angles between subspaces is performed in many applications, for example data analysis, random

processes, stochastic realization, etc. [21].

4.1. The GGBa strategy

The GGBa strategy is based on augmenting new information into a previously computed prolongation

operator, and thus enriching the filter. However, this enrichment cannot be done automatically since the

new eigenvectors may be obtained from a linear combination of the previous eigenvectors causing ill con-

ditioning of the coarse grid. To be able to safely add the new information, we develop a measure based on

the principal angles between each new eigenvector and the previous eigenspace.

In the first Newton iteration a GGB filter is constructed by solving the eigen problem of the multigrid
iteration matrix R1

MG for k nonconverging and ‘‘slow-to-converge’’ eigenvalues
R1
MGq

1
i ¼ k1i q

1
i ; i ¼ 1; . . . ; k.
As the nonlinear iteration proceeds and the next linear system is to be solved, we propose to compute only t

eigenvalues and eigenvectors, such that t < k. The idea is to enrich the space of a prolongation operator

with new eigenvectors. The updated operator after nonlinear iteration j may be written in the following

way:
Qj ¼ ½Q1;U 2; . . . ;Uj�;

where
Q1 ¼ fq11; q12; . . . ; q1kg;
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and the U matrices are given by
Uj ¼ fqj1; . . . ; qjtg; j > 1;
obtained from
Rj
MGq

j
i ¼ kji q

j
i ; i ¼ 1; . . . ; t. ð7Þ
In words, Uj contains the eigenvectors computed at the current iteration while Qj is the accumulated pro-

longation operator. Thus the idea of the GGBa method is to always recompute a limited amount of eigen

information and to use it to augment the prolongation operator used in the previous Newton iteration. Of

course as the nonlinear iteration proceeds, the prolongation operator grows increasing the size of the coarse

grid.
If the space spanned by the two subspaces Qj and [Qj,Uj+1] is nearly the same then the gain associated

with the new information is insignificant.

One way to measure the difference between the two subspaces is to compute the maximum principal an-

gle between them. Angles between subspaces are defined in the following way (for more details see [21,22]).

Let F and G be the column space of Qj and Uj+1, respectively, and let s ¼ dimðFÞ and t ¼ dimðGÞ with
s P kP t. The principal angles a1; . . . ; at 2 ½0; p

2
� between F and G may be defined recursively for

p = 1, . . ., t by
cosðapÞ ¼ max
v2G

max
w2F

vTw ¼ vTp wp ð8Þ
subject to
kvk ¼ kwk ¼ 1; vTvi ¼ 0; wTwi ¼ 0; i ¼ 1; . . . ; p � 1.
The vectors v1, . . .,vt and w1, . . .,wt are called principal vectors. More explicitly, definition (8) follows if the

subspaces F and G are orthogonalized, and rotated such that the inner product between their columns is

maximized and reordered in an ascending order.

In our context the rank of the prolongationQj is much smaller than the rank of the multigrid iteration ma-
trix Rj

MG. For this purpose, we choose the Björck–Golub algorithm [21] to compute the principal angles. This

algorithm is based on a singular value decomposition (SVD). Let the columns of ~Q 2 RN�s and ~U 2 RN�t be

an orthonormal basis for rangeðFÞ and rangeðGÞ, say computed by a QR factorization, i.e.,
Qj ¼ ~Q~R1;

Ujþ1 ¼ ~U ~R2;
where ~Q
T ~Q ¼ I s; ~U

T ~U ¼ I t. Further, let
~Q
T ~U ¼ Z

r1

. .
.

rt

0
BB@

1
CCAV T; 1 P r1 P � � � P rt P 0
be the reduced SVD of ~Q
T ~U , where Z 2 RN�s, V 2 Rt�t. The principal angles are given by
ai ¼ arccosðriÞ; i ¼ 1; . . . ; t;
where 0 6 a1 6 � � � 6 at 6 p
2
and the columns of ~QZ and ~UV are the principal directions.

For computational purposes, the GGBa method is then defined by using the new U j+1 eigenvectors to

enrich the space of the prolongation Q j only if all the principal angles (not only the maximum angle)

ai P acr, where acr is some tolerance angle. Considering only the maximum principal angle might lead to

an ill conditioned coarse grid matrix as some vectors in Uj+1 might lie in Q j while others are nearly orthog-

onal to Q j. Therefore, one should compute an angle between each new eigenvector q jþ1
i 2 Ujþ1 and the
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previous eigenspace Q j.1 The computation of the angle between a vector and a subspace can be simplified in

the following way. Define a projection of qjþ1
i onto the subspace ~Q

j

1 In
yi ¼ ~Q
j ð~QjÞT ~Qj
� ��1

ð~QjÞTqjþ1
i ¼ ~Q

jð~QjÞTqjþ1
i ; i ¼ 1; . . . ; t. ð9Þ
The cosine of the angle between qjþ1
i and ~Q

j
with relation kqjþ1

i k ¼ 1 is given by
cos ai ¼
yTi q

jþ1
i

�� ��
kyik2kq

jþ1
i k2

¼
~Q
jð~QjÞTqjþ1

i

� �T

qjþ1
i

����
����

k~Qjð~QjÞTqjþ1
i k2

¼

���� ð~QjÞTqjþ1
i

� �T

ð~QjÞTqjþ1
i

� �����
kð~QjÞTqjþ1

i k2
¼ kð~QjÞTqjþ1

i k. ð10Þ
Note that GGBa incrementally adds eigenvectors to the projector, which leads to an increased cost to apply

the filter. However, attempting to remove eigenvectors no longer needed is even more expensive. Moreover,

our experience shows that only limited amount of eigenvectors are added and thus the additional cost is

negligible. The GGBa strategy may be very effective if the multigrid iteration matrices vary significantly

from iteration to iteration. Yet, when the eigenspace only slightly changes, computing t new eigenvectors

may not be justified.

4.2. The MGGB strategy

The second strategy, termed MGGB (modified GGB), is based on the full reuse of a previously com-

puted prolongation operator. That is, using the same GGB filter for several nonlinear iterations. Again,

if the iteration matrices only change slightly, then full reuse may yield satisfactory convergence without

the cost of repeating the eigen calculation. On the other hand, automatic reuse might be unsafe (see Section

3). To evaluate whether a new filter has to be computed or not, we measure how far are the previous eigen-
vectors (of the GGB filter) qji from being also eigenvectors of the current multigrid iteration matrix Rjþ1

MG.

Note that qji are computed from (7), while Rjþ1
MG denotes the current operator. This is achieved by employing

a standard Rayleigh quotient estimation, popular in eigen calculations. Thus, the goal of MGGB is to avoid

the exact computation of t new eigenvectors, which was employed by GGBa strategy. Later, we generalize

the standard Rayleigh quotient measure to an angle between the vector Rjþ1
MGq

j
i and the entire filter Qj. This

generalization is important due to the following. First, one can use similar algorithms for both GGBa and

MGGB to compute the angle. Second, the Rayleigh quotient criteria may be somewhat relaxed since linear

combination of eigenvectors might better capture the behavior.
We now describe the mathematical formulations. A Rayleigh quotient type measure between the eigen-

vector qji and the multigrid operator Rjþ1
MG is given by
kRjþ1
MGqi � qiqik2

jqij
6 d; i ¼ 1; . . . ; k; ð11Þ
where qi is the Rayleigh quotient defined as
qi ¼
q�i R

jþ1
MGqi

q�i qi
; ð12Þ
and d is some small constant. Using the fact that q�i qi ¼ 1, (11) can be rewritten as
kRjþ1
MGqi � q�i R

jþ1
MGqi

� �
qik2

jq�i Rjþ1
MGqij

6 d; i ¼ 1; . . . ; k. ð13Þ
fact ~Q
j
can be used in the GGB method instead of Qj.
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Moreover, measure (13) is related to the acute angle (6) between Rjþ1
MGqi and qi in the following way
kRjþ1
MGqi � qiqik2

jqij
¼ tan hi. ð14Þ
This can be seen by writing down the acute angle and substituting the Rayleigh quotient (12)
cos hi ¼
jq�i R

jþ1
MGqij

kRjþ1
MGqik2

¼ jqij
kRjþ1

MGqik2
.

So,
cos2hi ¼
q�
i qi

kRjþ1
MGqik

2

2

¼ q�
i qi

kRjþ1
MGqik

2

2 � q�
i qi þ q�

i qi

.

Using the relation
kRjþ1
MGqi � qiqik

2

2 ¼ kRjþ1
MGqik

2

2 � q�
i qi
we arrive at
cos2hi ¼
q�
i qi

kRjþ1
MGqi � qiqik

2

2 þ q�
i qi
and (14) follows (for more details see [22]).
One can generalize the acute angle hi to an angle between the vector Rjþ1

MGqi and the subspace Qj (as op-

posed to a single vector), assuming real eigenvectors. Defining a projection of Rjþ1
MGqi onto the subspace Qj

using Eq. (9) and (10), one arrives at
cos bi ¼
kðQjÞTRjþ1

MGqik
kRjþ1

MGqik2
.

The square of the cosine is further simplified by
cos2bi ¼
kðQjÞTRjþ1

MGqik
2
2

kRjþ1
MGqik

2

2

¼
qT1R

jþ1
MGqi

� �2 þ � � � þ qTi R
jþ1
MGqi

� �2 þ � � � þ qTk R
jþ1
MGqi

� �2
kRjþ1

MGqik
2

2

¼
qT1R

jþ1
MGqi

� �2 þ � � � þ q2
i þ � � � þ qTk R

jþ1
MGqi

� �2
kRjþ1

MGqik
2
2

. ð15Þ
Substituting (6) into (15) yields
cos2bi ¼
qT1R

jþ1
MGqi

� �2 þ � � � þ kRjþ1
MGqik

2
2cos

2hi þ � � � þ qTk R
jþ1
MGqi

� �2
kRjþ1

MGqik
2
2

¼
qT1R

jþ1
MGqi

� �2
kRjþ1

MGqik
2

2

þ � � � þ cos2hi þ � � � þ
qTk R

jþ1
MGqi

� �2
kRjþ1

MGqik
2

2

and since all the terms on the right-hand side are greater or equal to zero, we get the following bound:
cos2bi P cos2hi ¼
1

kRjþ1

MG
qi�qiqik2
jqi j

þ 1
;

which relates Rayleigh quotient to an angle between subspaces. A new eigenspace is then recomputed if

max{bi}P bcr. The choice of bcr depends on the problem solved. However, for the example problems given
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in the next section, we find the methods almost insensitive to bcr. That is, bcr might affect local linear solves

but will not affect the general trend. Note that the measures proposed for the MGGB method assume

|k1| P � � �P |kk| P � � �P |kN|, which is a drawback to the method since no measure can take into account

flipping in the order of the eigenvalues and the corresponding eigenvectors. The GGBa method does not

suffer from this limitation.
5. Numerical results

In order to illustrate the behavior of the MGGB and GGBa methods, we apply the solvers to a 1D mod-

ified Bratu problem, 2D nonlinear sail (membrane) problem, 2D steady, thermal-convection flow and 3D

chemical vapor deposition (CVD) reactor. The last problem is the most challenging for the multigrid solvers

as different physics is used for modelling the problem.

5.1. 1D modified Bratu problem

We apply left preconditioners to GMRES for the solution of the modified Bratu problem described in

(4). Two sweeps of a standard multigrid with restriction based on full weighting and injection described in

Section 3 are used. Results are given for the GGB method and the corresponding MGGB method. One pre-

and post-Gauss–Siedel smoothing sweep is applied within the multigrid cycle at the fine level. We do not

consider here the GGBa strategy described in Section 4. Table 2 shows the convergence of the various pre-
conditioners for a system of size N = 315. The problem parameters are chosen to be k = 3 and a = 1.3, with

initial guess u0 = 2sin(px), yielding a nonlinear problem (4) that is indefinite and nonsymmetric. For the

linear solve, we use the following stopping criteria
krik2
kr0k2

6 10�8, where ri = f � Kui is the residual at the inner

iteration i. The outer iteration is terminated when iF(u)i 6 10�6, where F(u) denotes the nonlinear residual

vector and u is the approximated solution vector. Results obtained for MGGB methods use a measure

based on an approximate angle between a subspace and a vector described in Section (4), with a critical

angle for recomputing the GGB filter set to hcr = 20�. We choose only four modes to construct the filter.
In general, all the multigrid methods maintain the same rate as the problem size increases, i.e., are mesh

independent. Yet, adding the additional GGB operator (with only four modes) cuts in almost half the re-

quired number of iterations. It is also clear from Table 2 that GGB and MGGB with MGfull performs the

best. In fact, both methods have similar convergence rates, yet the prolongation in the case of MGGB is

computed only once at the first iteration and reused. Fig. 3 compares the maximum approximate angle

happ ¼ \ðQj;Rjþ1
MGq

jÞ and maximum exact angle hexa = \(Qj,qj+1) between a subspace and a vector. For both

MGGB cases the filter Qj is computed only once. The figure illustrates that the vector Rjþ1
MGq

j we used to

obtain the angle happ is valid when the multigrid iteration matrix only slightly changes as in the MGfull case.
Table 2

Convergence of various preconditioners to GMRES applied to modified Bratu problems of size 115, 315 and 515, respectively

Preconditioner Total linear solve iterations Average number of iterations

N = 115 N = 315 N = 515 N = 115 N = 315 N = 515

MGfull 133 112 102 8.31 8.00 7.84

MGinj 298 265 245 18.62 18.92 18.84

GGB with MGfull 76 59 54 4.75 4.21 4.15

GGB with MGinj 153 140 129 9.56 10.00 9.92

MGGB with MGfull 76 59 54 4.75 4.21 4.15

MGGB with MGinj 161 145 133 10.06 10.35 10.23

The problem parameters are set to k = 3 and a = 1.3.



Fig. 3. Approximate and exact angle between a subspace and a vector for MGfull and MGinj iteration matrices (N = 315), respectively.
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5.2. A sail on nonlinear springs

We study the performance of the GGB filters applied to a 2D sail (membrane) on a nonlinear bed of

springs. The sail has a small crack that is modeled with softening zones at the tips. The steady governing

equation for transverse displacement u in the domain (x,y) 2 X with boundary C is:
r2u� KðuÞuþ f ¼ 0 in X;
where f is a uniform distribution of wind load acting on the sail and K is a nonlinear spring given by

K(u) = k0u
a where k0 is the material constant (usually greater than zero). a describes the degree of nonlin-

earity. The boundary conditions for the problem are given as
u ¼ 0 on C;

ou
on

¼ 0 on sþ; s�;
where s+ and s� denotes the two sides of the crack. A standard Galerkin finite element discretization pro-

duces a system of nonlinear algebraic equations of the form g(u) = f, that are solved by Newton�s method.

For every Newton iteration j a global tangent stiffness matrix given by Kj
AB ¼ ogðuÞ

ou jðu¼ujÞ is computed. The

global tangent stiffness is assembled from local contributions of the from
kjab ¼ sab þ ð1þ aÞk0 uh
� �a

mab;
where sab and mab are the standard stiffness and mass matrices, respectively, and uh is the averaged approx-

imated displacement at the nodes of the element. Fig. 4(a) shows the finite element mesh considered. The



Fig. 4. A sail with a crack on nonlinear springs. (a) The mesh of the sail (2460 elements). (b) Zoom of the crack with damage zones.
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sail is constrained all around and a uniform wind load is applied to all the nodes. We use 2460 elements for

the model that results in systems of that 1183 unknowns. Details of the finite element mesh at the tip of the

crack are shown in Fig. 4(b). The red dashed line illustrates the crack interface. The circles around the crack

tips define the damage regions for which k0 is negative. This causes the tangent stiffness matrix to become

symmetric-indefinite for certain Newton iterations. We apply two cycles of a smoothed aggregation multi-

level method to precondition GMRES(15), similar to two cycles used in GGB. We use two levels of the

aggregation method and one Jacobi smoothing on the fine grid. The results are obtained for normalized

variables k0 = �100 inside the damaged zones and k0 = 100 otherwise. The damaged region is set to have
radius of 3 units. We use a = 2 for the degree of nonlinearity. Fig. 5 presents the normalized displacement of

the sail subjected to distributed wind load of 15 units. Table 3 summarizes the convergence behavior of the

various preconditioners. We emphasize that only five modes are used by GGB every linear solve. The last

two columns describe the total accumulated modes computed and the Newton iteration index in which they

were computed. Again, GGB requires the minimum amount of iterations to converge, while both MGGB

and GGBa performed the best of all the methods in terms of the overall time. Fig. 6 compares the maxi-

mum approximate angle happ ¼ \ðQj;Rjþ1
MGq

jÞ and maximum exact angle hexa = \(Qj,qj+1) between a sub-

space and a vector. The results show good agreement in particular for the last Newton steps. This
suggest that the approximated angle used by MGGB can effectively detect large variations in the GGB

filter.

5.3. Thermal-convection flow in a box

In this section, we demonstrate the performance of GGB, GGBa and MGGB methods applied to steady,

thermal-convection flow. The governing PDEs are the following Navier–Stokes with thermal energy

equations
Momentum qðu � rÞu�r � T� qg ¼ 0; ð16Þ
Total mass r � ðquÞ ¼ 0; ð17Þ
Thermal energy qĈpðu � rÞT þr � q ¼ 0. ð18Þ
The unknown quantities are u the fluid velocity vector, P the hydrodynamic pressure and T the tempera-

ture. q, g, and Ĉp are, respectively, the density, the gravity vector and the specific heat at constant pressure.



Fig. 5. Normalized displacements.

Table 3

CPU time and iteration summary for the cracked sail on nonlinear springs

Preconditioners CPU time (s) Linear iterations Eigenvectors

Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 54.7 – – 1889 157.4 – –

GGB 46.8 26.35 56.30 212 17.6 60 1–12

GGBa 37.9 19.73 52.07 280 23.3 13 1–12

MGGB 35.4 12.66 35.76 215 17.9 30 1–5,7
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The Boussinesq approximation is used for representing the body force term. The necessary constitutive

equations for T and q are
Stress tensor T ¼ �PI� 2

3
lðr � uÞIþ lðruþruTÞ;

Heat flux q ¼ �jrT ;
where l is the viscosity and j is the thermal diffusivity. Eqs. (16)–(18) are approximated by a Galerkin least

squares formulation. The resulting nonlinear system of equations gives rise to a system of coupled, nonlin-

ear and nonsymmetric algebraic equations. We employ MPSalsa [23,24] to generate the system of
equations.

To solve the linear systems arising from Newton�s method, we use right preconditioning with a restarted

GMRES(m) method. A smooth aggregation multilevel method [25] implemented in ML package [26] is used

for the multigrid method. This scheme is accelerated with a GGB, GGBa and MGGB methods. We apply a

measure based on the angle between a vector and a subspace (see Section 4) for the following cases. In the

GGBamethod the angle is used to determine whether the new computed eigenvector is needed to enrich the

prolongation. In all examples we compute two new eigenvectors every nonlinear iteration. If hi > 5� the new
eigenvector is added. In MGGB we use a maximum approximate angle which is used to predict whether the
entire prolongation should be recomputed. If h > 20� a new filter is computed. The approximate angle is
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Fig. 6. Approximate and exact angle between subspace and a vector.
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computed between the previous prolongation Qj and the approximate vector Rjþ1
MGq

j
1 where qj1 2 Qj corre-

sponds to the highest eigenvalue. We employ LAPACK subroutines [27] to compute the maximum principal
angle. The angle is computed numerically by first obtaining an orthogonal basis (QR factorization based on

Househoulder triangularization) and second using an SVD type approach (see Section 4 for more details).

Due to nonsymmetry our algebraic multigrid experience with smoothed aggregation shows that the best

performance is obtained when piecewise constants are used as grid interpolants (unsmoothed aggregation).

We also apply two cycles of the aggregation method to precondition GMRES in order to have a fair com-

parison to the GGB cycle (see Fig. 1). For all problems, one pre- and post-ILU(0) smoothing iteration is

applied on each level, excluding the coarse one. On the coarsest level a direct solve is applied.

The eigensolver used for GGB [1], GGBa and MGGB methods is the implicitly restarted Arnoldi meth-
od implemented in ARPACK [19]. We initially compute 10 eigenvectors corresponding to largest magni-

tude eigenvalues to construct the cycle illustrated in Fig. 1. The accuracy of the eigensolver is set to

10�4 and the restarted Arnoldi space is set to 50. The tolerance of the linear solve is set to
krik2
kr0k2

6 10�6.

We report results for 2D flow in a box.

Tables 4–6 illustrate the convergence behavior of the various preconditioners with GMRES(40) applied

to a thermal-convection flow in a box. A no-slip condition is enforced on all surfaces. A hot temperature is

set on one side of the box and a cold temperature is set on the other side. We set the Rayleigh number to

1.0 · 105 and the Prandtl number to 1.0. The results are reported in Tables 4–6 for 32 · 32 elements with
4356 unknowns, 128 · 128 elements with 66,564 unknowns and 256 · 256 elements with 264,196 unknowns,

respectively. We apply three levels of the aggregation method from ML [26] to the 32 · 32 box, four levels

to the 128 · 128 box and five levels to the 256 · 256 box. Note that MGGB recomputes the eigenspace only

at certain Newton iterations as indicated in the last column of the tables. The computation is based on the

angle between a subspace and a vector described in Section 4.

It is clear from Table 4 that the fastest preconditioner to converge is the smoothed aggregation multilevel

method from ML [26], however the minimum number of iterations is obtained by the GGB preconditioner.



Table 4

CPU time and iteration summary for thermal-convection flow in 32 · 32 box with 4356 unknowns

Preconditioners CPU time (s) Linear iterations Eigenvectors

Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 8.69 – – 180 18.0 – –

GGB 13.88 5.73 41.28 105 10.5 100 1–10

GGBa 10.92 3.02 31.04 163 16.3 14 1–10

MGGB 11.00 2.27 20.63 129 12.9 40 1–4

Three levels of aggregation method are applied.

Table 5

CPU time and iteration summary for thermal-convection flow in 128 · 128 box with 66,564 unknowns

Preconditioners CPU time (s) Linear iterations Eigenvectors

Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 324.31 – – 825 82.5 – –

GGB 335.30 108.68 32.41 355 35.5 110 1–10

GGBa 326.44 61.85 18.95 456 45.6 13 1–10

MGGB 287.03 37.53 13.07 429 42.9 30 1,2,4

Four levels of aggregation method are applied.

Table 6

CPU time and iteration summary for thermal-convection flow in 256 · 256 box with 264,196 unknowns

Preconditioners CPU time (s) Linear iterations Eigenvectors

Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 4389.14 – – 3873 387.3 – –

GGB 2329.39 777.61 33.38 838 83.8 150 1–10

GGBa 2935.90 288.19 9.82 1741 174.1 15 1–10

MGGB 2172.93 236.80 10.90 1149 114.9 45 1–2,4

Five levels of aggregation method are applied.
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Both MGGB and GGBa methods converge in almost the same CPU time, yet MGGB requires fewer iter-

ations. On the 128 · 128 elements problem illustrated in Table 5, the MGGB method is the fastest method

to converge. GGBa also performs well computing only two new eigenvectors (except for the first step). As

expected, the GGB method performs the best in terms of iteration count. The performance of the precon-

ditioners on the largest problem, presented in Table 6, is quite interesting. The convergence of ML deteri-

orates and the number of iterations and CPU time for convergence is much higher than those obtained by

the GGB family. The best performance in terms of CPU time is obtained for MGGB. An important obser-

vation is that both GGBa and MGGB methods reduce the amount of work done by the eigensolver com-
pared to the GGB method.

Fig. 7 compares the exact angle hexa ¼ \ðQj; qjþ1
1 Þ with qjþ1

1 2 Ujþ1 to the approximate angle

happ ¼ \ðQj;Rjþ1
MGq

j
1Þ with qj1 2 Qj between a subspace and a vector. We compare the angles for a situation

where the GGB filter is computed only once in the first iteration. It can be seen that the approximation

is valid in the region where the multigrid iteration matrices only slightly vary (Newton iterations six and

higher) for the 32 · 32 and 128 · 128 problems. Nevertheless, the general behavior is well captured. In

the 256 · 256 box the approximated angle matches with the exact angle.
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5.4. Chemical vapor deposition reactor

Finally, we present the convergence of the multigrid solvers applied to a 3D chemical vapor deposition of

silicon in a horizontal rotating disk reactor. The mathematical model describing the reactor consist of the

incompressible Navier–Stokes equations for a variable-density fluid given in Eqs. (16)–(18) and a species

mass balance equation solved for Ng � 1 gas-phases species:
Table

CPU t

Precon

ML

GGB

GGBa
MGGB

Four l
qðu � rÞY k ¼ r � jk þ W k _xk for k ¼ 1; . . . ;N g � 1;
where Yk is the mass fraction of the kth species, jk is the flux of species k relative to the mass averaged veloc-
ity u, and _xk is the molar rate of production of species k from gas-phase reactions. The nonlinear systems of

equations are generated by MPSalsa [23,24] (see [28] for detailed problem description). Due to the chemical

reactions, this problem is more challenging to iterative solvers as different physics has different character

and the stabilization is applied only to the fluid part.

The problem consist of 8999 hexahedral (eight nodes) elements that corresponds to a problem size of

87,400 unknowns. Each node contains five flow variables and three chemical variables. We use GMRES(40)

to accelerate the solvers. We apply four levels of aggregation from ML [26] (unsmoothed aggregation). On
7

ime and iteration summary for CVD reactor with 87,400 unknowns

ditioners CPU time (s) Linear iterations Eigenvectors

Total Eigensolver Eigen % Total Average Total Itr. comp.

7173.19 – – 1461 243.50 – –

5502.57 1263.90 22.96 654 109 60 1–6

6065.17 688.4 11.35 866 144.33 13 1–3

5111.75 633.5 12.39 689 114.83 30 1–3

evels of aggregation method are applied.
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the fine level we use one symmetric Gauss–Seidel smoothing iteration while on the rest (excluding the coars-

est grid) we smooth with an ilu(0). A direct solve is applied on the coarse grid. The GGB filter is constructed

from only 10 modes. We use similar measures for GGBa and MGGB as for the thermal-convection prob-

lem. The tolerance of the linear solve is set to
krik2
kr0k2

6 10�6. The convergence results are reported in Table 7.

It is shown that for this problem GGB enhances the aggregation method both in terms of iterations and
overall CPU time. We note that even though MGGB requires more iterations to converge compared to

GGB, the savings in eigensolver calculations makes it significantly faster than the other methods consid-

ered. Thus at the end we find MGGB to be the most attractive variant of GGB.
6. Conclusions

The GGB method [1] provides robustness to multilevel methods applied to difficult systems (indefinite
and nonsymmetric). The efficiency of the method hinges on the highest eigenmodes computations. We study

two heuristic strategies to accelerate the GGB method applied to nonlinear problems. Both strategies,

GGBa and MGGB, reuse the previously computed eigenspace based on the angle between a subspace

and a vector. Numerical examples clearly show that MGGB performs the best of the methods considered

and provides significant time savings.
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